Highlights
- •
First study of treating ECGI as image translation using sequential conditional GAN.
- •
Standardized 2D body surface and heart surface potential maps.
- •
Effective prediction only using body surface potential maps.
- •
Validated on human data and across subjects.
Abstract
Electrocardiographic imaging (ECGI) aims to noninvasively estimate heart surface potentials starting from body surface potentials. This is classically based on geometric information on the torso and the heart from imaging, which complicates clinical application. In this study, we aim to develop a deep learning framework to estimate heart surface potentials solely from body surface potentials, enabling wider clinical use. The framework introduces two main components: the transformation of 3D torso and heart geometries into standard 2D representations, and the development of a customized deep learning network model. The 2D torso and heart representations maintain a consistent layout across different subjects, making the proposed framework applicable to different torso-heart geometries. With spatial information incorporated in the 2D representations, the torso-heart physiological relationship can be learnt by the network. The deep learning model is based on a Pix2Pix network, adapted to work with 2.5D data in our task, i.e., 2D body surface potential maps (BSPMs) and 2D heart surface potential maps (HSPMs) with time sequential information. We propose a new loss function tailored to this specific task, which uses a cosine similarity and different weights for different inputs. BSPMs and HSPMs from 11 healthy subjects (8 females and 3 males) and 29 idiopathic ventricular fibrillation (IVF) patients (11 females and 18 males) were used in this study. Performance was assessed on a test set by measuring the similarity and error between the output of the proposed model and the solution provided by mainstream ECGI, by comparing HSPMs, the concatenated electrograms (EGMs), and the estimated activation time (AT) and recovery time (RT). The mean of the mean absolute error (MAE) for the HSPMs was 0.012 ± 0.011, and the mean of the corresponding structural similarity index measure (SSIM) was 0.984 ± 0.026. The mean of the MAE for the EGMs was 0.004 ± 0.004, and the mean of the corresponding Pearson correlation coefficient (PCC) was 0.643 ± 0.352. Results suggest that the model is able to precisely capture the structural and temporal characteristics of the HSPMs. The mean of the absolute time differences between estimated and reference activation times was 6.048 ± 5.188 ms, and the mean of the absolute differences for recovery times was 18.768 ± 17.299 ms. Overall, results show similar performance between the proposed model and standard ECGI, exhibiting low error and consistent clinical patterns, without the need for CT/MRI. The model shows to be effective across diverse torso-heart geometries, and it successfully integrates temporal information in the input. This in turn suggests the possible use of this model in cost effective clinical scenarios like patient screening or post-operative follow-up.
Keywords
Deep learning
Electrocardiographic imaging
Inverse problem
© 2025 The Authors. Published by Elsevier B.V.